Preliminary Assessment of Basic Statistical Concepts

Save this file as **Statistics Review** to your desktop. While responding, save frequently. When you are done, save it again and email it to me at **olsongh3@gmail.com**.

Type your name here:

Multiple Choice

Select the best answer to each of the following items. Type the letter of the answer you select in the space provided to the left.

Identi	fy the	e letter of the choice that best completes the statement or answers the question.
	1a.	A researcher is interested in the eating behavior of elementary school children and selects a group of 25 children to be tested in a research study. The group of 25 children is a a. sample b. statistic c. population d. parameter
	2b.	A researcher is interested in the effect of St. Johns Wort on memory. A group of 25 college students is selected to participate in a research study. The average memory score obtained for the students is a a. sample b. statistic c. population d. parameter
	3c.	A researcher is curious about the average IQ of registered voters in the state of Florida. The entire group of registered voters in Florida is an example of a a. sample b. statistic c. population d. parameter
	4c.	Statistical techniques that summarize, organize, and simplify data are classified as a. population statistics b. sample statistics c. descriptive statistics d. inferential statistics
	5a.	A characteristic, usually a numerical value, that describes an entire population of scores is a a. parameter b. statistic c. variable d. constant
	6c.	How would the following mathematical operation be expressed in summation notation? "Add two points to each score, square the resulting value, then find the sum of the squared numbers." a. $\Sigma X + 2^2$

- b. $(\Sigma X + 2)^2$ c. $\Sigma (X + 2)^2$ d. $\Sigma X^2 + 2$

- 7c. Frequency distribution polygons are intended for use with _____.
 - a. either interval or ratio scales of measurement
 - b. only ratio scales
 - c. either nominal or ordinal scales
 - d. only nominal scales

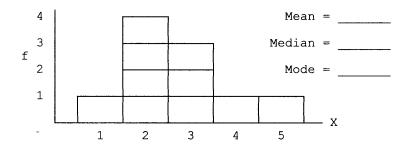
8c.	In a frequency distribution graph, frequencies are presented on the and the scores (categories) are listed
	on the a. X axis, Y axis
	b. horizontal line, vertical line
	c. Y axis, X axis d. class interval, horizontal line
9b.	In a distribution with positive skew, scores with the highest frequencies (i.e., occur most often) are
	a. on the right side of the distribution
	b. on the left side of the distribution
	c. in the middle of the distributiond. represented at two distinct peaks
	Table 2-2 The following table shows a frequency distribution of quiz scores.
	The following table shows a frequency distribution of quiz scores.
	<u>X</u> <u>f</u>
	5 6 4 5
	3 5
	2 3
	$1 \qquad 2$
_ 10b.	Refer to Table 2-2. How many individuals had a score of $X = 2$?
	a. 1
	b. 3 c. 5
	d. cannot be determined from the information given
_ 11c.	A sample of $n = 5$ scores has a mean of $X(\bar{X}) = 9$. What is ΣX for this sample?
	a. $9/5 = 1.80$
	b. 5/9 = 0.555 c. 5(9) = 45
	d. cannot be determined from the information given
_ 12b.	One sample has $(n = 4, \overline{X} = 10)$, and a second sample has $(n = 8, \overline{X} = 20)$. If the two samples are combined, the mean
	for the combined sample will be a. equal to 15
	a. equal to 15 b. greater than 15 but less than 20
	c. less than 15 but more than 10
	d. none of the above
 _ 13a.	A sample has (n = 20, \bar{X} =55). After one score is removed from the sample, the mean for the remaining scores is 51.
	From this information you can conclude that the removed score was a. greater than 55
	b. less than 55
	c. It is impossible to estimate the magnitude of the score.
 _ 14a.	For a distribution of scores, the mean is equal to the median. This distribution is most likely to be
	a. symmetricalb. positively skewed
	c. negatively skewed
	d. impossible to determine the shape

15c.	For any distribution, you can be sure that at least one individual has a score equal to the a. mean b. median c. mode
16b.	 d. all of the above For an extremely skewed distribution of scores the best measure of central tendency would be the a. mean b. median c. mode d. Central tendency cannot be determined for a skewed distribution.
17a.	What is the variance (σ^2) of a <i>population</i> with N = 5 and sums of squares (SS) = 40? a. $40/5 = 8$ b. $8^2 = 64$ c. $40/4 = 10$ d. $10^2 = 100$
18c.	A population has $\mu=40$ and $\sigma=8$. If each score is multiplied by 2, the new value of σ will be a. 4 b. 8 c. 16 d. insufficient information, cannot be determined
19b.	d. insufficient information, cannot be determined You must determine Q1 and Q3 to compute the a. sum of squared deviations b. semi-interquartile range c. variance d. standard deviation
20d.	Of the following z-score values, which one represents the most extreme location on the left-hand side of the distribution? a. $z = +1.00$ b. $z = +2.00$ c. $z = -1.00$ d. $z = -2.00$
21a.	For a population with μ = 80 and σ = 10, the z-score corresponding to X = 85 would be a. +0.50 b. +1.00 c. +2.00 d. +5.00
22b.	For a population with $\mu=60$ and $\sigma=8$, the X value corresponding to $z=-0.50$ would be a4 b. 56 c. 64 d. 59.5
23c.	For a population with $\mu=60$ and $\sigma=8$, the X value corresponding to $z=1.50$ would be a. 12 b. 61.5 c. 72 d. 90

24b.	A population of scores has $\sigma = 20$. In this population, a score of $X = 80$ corresponds to $z = +0.25$. What is the
	population mean?
	a. 70 b. 75
	c. 85
	d. 90
25d.	Under what circumstances would a score that is 15 points above the mean be considered an extreme score? a. when the population mean is much larger than 15 b. when the population standard deviation is much larger than 15
	b. when the population standard deviation is much larger than 15 c. when the population mean is much smaller than 15
26-	d. when the population standard deviation is much smaller than 15
26a.	Suppose you earned a score of $X = 54$ on an exam. Which set of parameters would give you the highest grade? a. $\mu = 50$ and $\sigma = 2$
	b. $\mu = 50$ and $\sigma = 8$
	c. $\mu = 58$ and $\sigma = 2$
	d. $\mu = 58$ and $\sigma = 8$
27d.	A population has $\mu = 50$ and $\sigma = 10$. If these scores are transformed into z-scores, the population of z-scores will have a mean of and a standard deviation of
	a. 50, 10
	b. 50, 1
	c. 0, 10
	d. 0, 1
28b.	A distribution with $\mu = 35$ and $\sigma = 8$ is being standardized so that the new mean and standard deviation will be $\mu = 50$ and $\sigma = 10$. In the new, standardized distribution your score is $X = 60$. What was your score in the original distribution? a. $X = 45$
	b. $X = 43$
	c. $X = 1.00$
	d. impossible to determine without more information
29b.	A colony of laboratory rats contains 7 albino rats and 23 hooded rats. What is the probability of randomly selecting an albino rat from this colony?
	a. 7/23b. 7/30
	b. 7/30 c. 23/30
	d. 23/7
30d.	An introductory psychology class has 9 freshman males, 11 freshman females, 8 sophomore males, and 12
50 u .	sophomore females. What is the probability of randomly selecting a male from this group?
	a. 9/20
	b. 8/20
	c. 17/20
	d. 17/40
31c.	For a normal distribution with $\mu = 40$ and $\sigma = 4$, what is the probability of sampling an individual with a score less than 462
	than 46? a. 0.0668
	b. 0.4452
	c. 0.9332
	d. 0.0548

32c.	The distribution of sample means consists of
	a. all the scores contained in a particular sample
	b. all the scores contained in a specific population
	c. the sample means for all the possible random samples (of a specific size) from a particular population
	d. the sample means for all the possible random samples (for all sample sizes) from a particular population
 33d.	The standard error of the mean provides a measure of
	a. the maximum possible discrepancy between $\overline{\mathbf{X}}$ and μ
	b. the minimum possible discrepancy between $\overline{\mathbf{X}}$ and μ
	c. the exact discrepancy between each specific $\bar{\mathbf{X}}$) and μ
	d. none of the above
 34b.	As sample size increases, the standard error of $\overline{\mathbf{X}}$
	a. also increases
	b. decreases
	c. stays constant
 35c.	A sample of $n = 25$ scores is determined to have a standard error of the mean (SEM) of 2 points. What is the standard
	deviation for the population from which the sample was obtained?
	a. 2
	b. 2/5
	c. 10 d. 50
26	
_36a.	A random sample is selected from a population with $\mu = 80$ and $\sigma = 10$. To ensure a standard error of 2 points or less, the sample size should be at least
	a. $n=5$
	b. $n = 10$
	c. $n = 25$
25	d. It is impossible to obtain a standard error less than 2 for any sized sample.
 37a.	If sample size (n) is held constant, the SEM will as the population variance increases.
	a. increaseb. decrease
	c. stay constant
	d. cannot answer with the information given
38b.	The final step of hypothesis testing is to
	a. locate the values associated with the critical region
	b. make a statistical decision about H ₀
	c. collect the sample data and compute the test statistic
	d. state the hypotheses and select an alpha level
 39a.	The <i>critical region</i> for a hypothesis test consists of
	a. outcomes that have a very low probability if the null hypothesis is true
	b. outcomes that have a high probability if the null hypothesis is true
	c. outcomes that have a very low probability whether or not the null hypothesis is true
	d. outcomes that have a high probability whether or not the null hypothesis is true

40d.	In a hypothesis test, an extreme z-score value, like $z = +3$ or $z = +4$,
	a. is probably in the critical region
	b. means that you should probably reject the null hypothesis
	c. is strong evidence of a statistically significant effect
	d. all of the above
	e. none of the above
41a.	A Type I error means that a researcher has
	a. falsely concluded that a treatment has an effect
	b. correctly concluded that a treatment has no effect
	c. falsely concluded that a treatment has no effect
	d. correctly concluded that a treatment has an effect
42c.	The probability of committing a Type I error
–	a. is determined solely by the size of the treatment effect
	b. cannot be controlled by the experimenter
	c. is determined by the level of significance that one chooses
	d. is determined by the value for beta (β) one selects
43d.	When $\alpha = .05$, the critical boundaries for a hypothesis test are $z = +1.96$ and -1.96. If the z-score for the sample data
 , 1 5 u .	is $z = -1.90$, then the correct statistical decision is
	a. fail to reject H_1
	b. fail to reject H_0
	c. reject H ₁
	d. reject H_0
44c.	A researcher reports that there is a significant difference between two treatments at the .05 level of significance.
. ++0.	This means that
	a. if the researcher repeated the experiment, there is a 95% probability that the same decision
	would be reached
	b. the difference obtained in the experiment is at least 5% larger than the standard error
	c. there is a 5% probability (or less) that the difference is due to chance
	d. the average score for one treatment is at least 5% higher than the average score for the other
	treatment
4.51	What do not be 1 2 200
 45b.	What is the <i>estimated</i> standard error of the mean, in the i, obtained from a sample with $n = 9$ and $s^2 = 36$?
	a. $\sqrt{36/9}$
	b. $\sqrt{36/8}$
	c. 36/√9
	·
	d. $36/\sqrt{8}$
46c.	One sample has $n = 6$ and $SS = 20$ and a second sample has $n = 6$ and $SS = 30$. What is the pooled variance for the
	two samples?
	a. 25
	b. 50
	c. 50/10
	d. 50/12
 47c.	A researcher reports $t(24) = 5$ for a 2-group, independent-measures experiment. How many subjects participated in
	the entire experiment?
	a. 24
	b. 25
	c. 26
	d. 12


48c.	Which of the following most closely resembles the general form of an interval estimate?
	a. $statistic = parameter \pm error$
	b. $statistic = parameter \times error$
	c. parameter = statistic \pm error
	d. $error = parameter \pm statistic$
49b.	If all other factors are held constant, increasing the sample size will
	a. increase the standard error
	b. decrease the width of the confidence interval
	c. increase the width of the confidence interval
	d. none of the above
50c.	Which combination of factors would definitely reduce the width of a confidence interval?
	a. use a larger sample and increase the level of confidence
	b. use a smaller sample and increase the level of confidence
	c. use a larger sample and decrease the level of confidenced. use a smaller sample and decrease the level of confidence
	•
51c.	A researcher uses analysis of variance to test for mean differences among four treatments with a $n = 6$ in each
	treatment. The F-ratio for this analysis would have what df values?
	a. df = 3, 5
	b. $df = 3, 15$
	c. $df = 3, 20$ d. $df = 4, 24$
52h	
52b.	A researcher reports an F-ratio with $df = 3$, 36 for an independent-measures experiment. How many treatment conditions were compared in this experiment?
	a. 3
	b. 4
	c. 36
	d. 39
53d.	
	ANOVA, the analysis would have $df_{total} = \underline{}$.
	a. 18
	b. 19
	c. 38
	d. 39
54a.	A treatment effect refers to differences between scores that are due to the different treatment conditions. The
	differences (or variability) produced by <i>treatment effects</i> will contribute to
	a. the numerator of the F-ratio
	b. the denominator of the F-ratio
	c. both the numerator and the denominator of the F-ratio
	d. <i>Treatment effects</i> do not contribute to the F-ratio because they are removed before the
	F-ratio is computed.

55h	Under what circumstances are post tests necessary?
_ 550.	a. reject the null hypothesis with $k = 2$ treatments
	b. reject the null hypothesis with $k > 2$ treatments
	c. fail to reject the null hypothesis with $k = 2$ treatments
	d. fail to reject the null hypothesis with $k > 2$ treatments
56c.	A research study compares three treatments with $n = 5$ in each treatment. If the data were examined using an
	analysis of variance, the F-ratio would have $df = \underline{}$.
	a. 12
	b. 14
	c. 2, 12
	d. 2, 14
57a.	In a two-factor analysis of variance a main effect is defined as
	a. the mean differences among the levels of one factor
	b. the mean differences among all treatment conditions
	c. the mean difference between the two factors
	d. the difference between the largest treatment mean and the smallest treatment mean
 58d.	If the mean and variance are computed for each sample in two-factor experiment, which of the following types of
	sample data will tend to produce large F-ratios for the two-factor ANOVA?
	a. big values for the sample means
	b. small values for the sample means
	c. big values for the sample variances
	d. small values for the sample variances
 _ 59a.	A set 5 pairs of X and Y values has $SS_X = 10$, $SS_Y = 40$ and $SSCP = 10$. What is the Pearson correlation?
	a. $r = 10/20 = 0.50$
	b. $r = 10/400 = 0.025$
	c. $r = \sqrt{10/20} = 0.707$
	d. $r = 40/100 = 0.40$
60a.	In the general linear equation $Y = bX + a$, the value of a is called
	a. the slope constant
	b. the Y-intercept
	c. the X-intercept
	d. the beta factor
61a.	What information <i>cannot</i> be determined from the general linear equation $Y = bX + a$?
	a. the correlation between X and Y
	b. the slope
	c. the Y intercept
	d. a and c
62c.	The entrance fee for a theme park is \$20. Tickets for each ride and attraction are \$3 a piece. Which of the following
	equations describes the relation between the total cost (Y) and the number of tickets purchased (X) in a single visit
	to the park?
	a. $Y = 20X + 3$
	b. $Y = 60X$
	c. $Y = 3X + 20$
	d. $X = 3Y + 20$

 67d.	In the test for goodness of fit, the chi-square statistic has degrees of freedom equal to
	a. n - 1
	b. n - 2
	c. n - C (where C is the number of categories)
	d. none of the above
 68d.	The chi-square test for independence is used to test for
	a. a mean difference between two populations
	b. a difference between a sample distribution and a population distribution
	c. a difference in variance between two populations
	d. a relationship between two variables
 69c.	The chi-square test for independence can be used to evaluate
	a. the relationship between two variables
	b. differences between two or more population frequency distributions
	c. both of the above
	d. neither of the above
 70d.	The chi-square test for independence has degrees of freedom given by
	a. RxC
	b. $R \times C(n-1)$
	c. n-RxC
	d. $(R-1)(C-1)$
 71a.	A chi-square test for independence is being used to evaluate the relationship between two variables, one of which is
	classified into 3 categories and the second of which is classified into 4 categories. The chi-square statistic for this
	test would have df equal to
	a. 6
	b. 7
	c. 10 d. 11
72	
 72.	Describe the sequence of mathematical operations that would be used to evaluate each of the following expressions. a. ΣX^2 Sum the squares
	1
	b. $(\Sigma X)^2$ Sum then square
	c. $\Sigma X + 1$ Sum, then add one
	d. $\Sigma(X+1)$ Add one to each X, then sum
	e. $\Sigma(X+1)^2$ Add one to each X, square the result, then sum
73.	Calculate each value requested for the following set of scores. Scores: 0, 1, 4, 2
	a. $\Sigma X + 2$ 9
	b. $\Sigma(X+2)$ 15
	c. $\Sigma(X+2)^2$ 65
75.	A distribution of N = 10 scores has $\mu = 50$ and $\sigma = 10$. If another five individuals, all with scores of X = 50, are
, , , , ,	added to this distribution, what will happen to the standard deviation? Will it increase, decrease, or stay the same?
	Explain your answer.
	I was provided the same of the
	Adding scores at the mean will not change the mean, but it increase the number of scores clustered around the mean,
	hence the variance (and thus the SD) will decrease.
76	
76.	A set of exam scores are reported as X values and z-scores. On this exam a score of $X = 75$ corresponds to a z-score of $Z = 1.00$. What are the values for the man and
	of $z = +2.00$, and a score of $X = 60$ corresponds to a z-score of $z = -1.00$. What are the values for the mean and standard deviation for this axim? (Hint: Sketch a distribution and locate each of the z-score positions.)
	standard deviation for this exam? (Hint: Sketch a distribution and locate each of the z-score positions.)

One SD = 5 points. Since 2z is 10 pts above the mean, the mean must be 75 - 2z or 75-10 = 65

77. Find the mean, the median, and the mode for the set of scores in the frequency distribution histogram below.

Mean 27/10 = 2.7

Median 2.5

Node 2

For the next two items, type your answer in the box provided (the box will expand as needed).

78. A set of exam scores are reported as X values and z-scores. On this exam a score of X = 75 corresponds to a z-score of z = +2.00, and a score of X = 60 corresponds to a z-score of z = -1.00. What are the values for the mean and standard deviation for this exam? (Hint: Sketch a distribution and locate each of the z-score positions.)

One SD = $\overline{5}$ points. Since 2z is 10 pts above the mean, the mean must be 75 - 2z or 75-10 = 65

80. State the alternative hypothesis (H₁) for an ANOVA comparing four treatment conditions. Explain why the hypothesis is stated in this way.

A least one pair of means are different (i.e., at least one mean is different from the others). All four means are not equal.

For the next two items, fill in the blanks in the tables.

81. A researcher would like to know whether the change in seasons has any consistent effect on students' academic performance. In the middle of each of the four seasons the researcher selects a random sample of n = 10 students. Each individual in these four separate samples is given a standardized test. The data from this study are examined using an analysis of variance and the results are shown in the summary table below. Fill in all missing values in the table.

Source	SS	df	MS	
Between Treatments	_60_	_3_	_20_	F = _10_
Within Treatments	_72_	_36_	2	
Total	132	39		

82. The following table summarizes the results of a two-factor ANOVA evaluating an independent-measures experiment with two levels of factor A, three levels of factor B, and n = 5 subjects in each separate sample. Fill in all missing values in the table. (Hint: Start with the df column.)

Source	df	SS	MS	
Between Treatments	_5 _	60		
Factor A	_1 _	_10_	_10_	$F_A = 5$
Factor B	_2 _	_20_	_10_	$F_B = _5$
A x B	_2 _	30	_15_	$F_{AxB} = _7.5_$
Within Treatments	_24_	_48_	2	
Total	_29_	_108_		

Save the file and email it to me at olsongh3@gmail.com.