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Unbiased estimates of population parameters


A statistic, w, computed on a sample, is an unbiased estimate of a population parameter, θ, if its expected value [ℰ (w)] is the parameter, θ. 
Unbiased estimate of the population mean

It is easy to show, for example, that the sample mean, 
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, provides an unbiased estimate of the population mean, μ.
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However, any ℰ (
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X

) is, by definition, µ, for all observations taken from the same population. Therefore, 
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Unbiased estimate of the population variance


In contrast, it can be shown that the sample variance, s2, is a biased estimate of the population variance, σ2,  i.e., that ℰ (S2) ≠ σ2:
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Consider, first, the first term to the right of the equal sign in (3), above.
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By definition, the population variance is,
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so that, for any observation, i,
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Substituting (6) into (4) yields,
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Now, consider the second term to the right of the equal sign in (3), 
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. The variance of the sampling distribution of means is:
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from which,
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Substituting the expressions, (7) and (9) into (3) yields:
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In words, the expected value of the sample variance is the difference between the population variance, 
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, and the variance of the distribution of sample means, 
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X

s

. Since the variance of the distribution of sample means typically is not zero, the sample variance under-estimates the population variance. In other words, the sample variance is a biased estimator of the population variance.
It has already been demonstrated, in (2), that the sample mean, 
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, is an unbiased estimate of the population mean, µ. Now we need an unbiased estimate (
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s
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) {note the tilde to imply estimate} of the population variance σ2. In (10), it was shown that
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which, after substituting (11), yields
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Equation (13) shows that the average of the sample variances [
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factor of 
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Hence, an unbiased estimate of 
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 is given by
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It is easy to show that 
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is an unbiased estimate of 
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:
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Unbiased estimate of the standard error of the mean,
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.


The unbiased estimate of 
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is given by
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(12)
In words, the unbiased estimate of the standard error of the mean is the unbiased estimate of the population standard deviation divided by the square root of the sample size.
� The material presented here is derived from Hays (1973, 2nd Ed, pp. 272-274





_1296288603.unknown

_1296288612.unknown

_1451836526.unknown

_1451836837.unknown

_1451836921.unknown

_1451837003.unknown

_1451837039.unknown

_1451837199.unknown

_1451836958.unknown

_1451836874.unknown

_1451836768.unknown

_1451836814.unknown

_1451836664.unknown

_1296288618.unknown

_1296288622.unknown

_1296288625.unknown

_1296288626.unknown

_1296288623.unknown

_1296288619.unknown

_1296288613.unknown

_1296288607.unknown

_1296288609.unknown

_1296288611.unknown

_1296288608.unknown

_1296288605.unknown

_1296288606.unknown

_1296288604.unknown

_1296288598.unknown

_1296288600.unknown

_1296288602.unknown

_1296288599.unknown

_1296288596.unknown

_1296288597.unknown

_1296288595.unknown

