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When we test a null hypothesis that, say, the means of two populations are equal, e.g., H0:
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this is tantamount to hypothesizing that the knowledge of group membership provides no information to help us predict differences among the group outcomes. On the other hand, if we reject the null hypothesis, then we, essentially, are saying that knowledge of group membership does predict group outcomes. So, if we had a way to code group membership in such a way that we could regress the outcome measure on the group membership code then we could analyze the data using regression analysis. In other words, we could set up a regression model such as
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(Eq. 1)
where the X’s carry the codes for group membership. In this case, testing the difference between means is equivalent to testing the significance of 
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. In this document, we will see how this is accomplished.

There are three types of coding schemes that are widely used in regression analysis to test differences among group means: dummy coding, effect coding, and orthogonal coding. Each of these is considered below, first in the simple two-group case, then for the cases analogous to a one-way ANOVA, and finally for a factorial ANOVA design.

Two-group Design
We’ll begin with the simple, two-group design illustrated in Table 1. There, the two groups represent, say, two treatment conditions, and the outcome measure, Y, is the dependent variables of interest. 

	Table 1

	Outcome Measure, Y

	Group 1
	Group 2

	1
	3

	2
	3

	2
	4

	3
	4

	2
	2



A t test of the difference between means, using Excel, yields Table 2, where it is shown that both the one-tailed and two-tailed t tests of the difference between means are statistically significant, t(1) = -2.449; p = .020 (one-tail); p = .040 (two-tail).
	Table 2: t-Test: Assuming Equal Variances

	 
	Group 1
	Group 2

	Mean
	2
	3.2

	Variance
	0.5
	0.7

	Observations
	5
	5

	df
	8
	 

	t Stat
	-2.449
	 

	P(T<=t) one-tail
	0.020
	 

	P(T<=t) two-tail
	0.040
	 


To replicate the test using regression we use either effect or orthogonal coding since, iIn the two-group case, dummy coding reduces to effect coding.
Two-Group Dummy Coding

Dummy coding is, perhaps, the easiest system of coding treatment effects (i.e., group membership effects) in ANOVA. It uses columns of 1’s and 0’s to identify group membership. For instance, in Table 3, there are two “indicator” columns, or variables, i.e., the X’s. For X1, and individual is coded 1 if the individual belongs to Group 1, and zero otherwise. For X2, an individual is coded 1 if the individual belongs to Group 2; zero otherwise. Thus, the group to which an individual belongs is uniquely identified. An individual in Group 2, for instance, has the dummy code: 0 1.:

	Table 3: Effect Coding

	
	Effect Codes
	

	Group
	X1
	X2
	Y

	1
	1
	0
	1

	1
	1
	0
	2

	1
	1
	0
	2

	1
	1
	0
	3

	1
	1
	0
	2

	2
	0
	1
	3

	2
	0
	1
	3

	2
	0
	1
	4

	2
	0
	1
	4

	2
	0
	1
	2

	
	
	
	



However, there is a problem with the coding shown in Table 3. Only one of the two X columns are required to identify the groups to which individuals belong. We can ignore any one of the X columns and still be able to uniquely identify group membership. For instance, if we ignore X2 then,

 Individuals in Group 1 are identified by the dummy code: 1, and

 Individuals in Group 1 are identified by the dummy code: 0.

Setting-up the regression analysis to regress Y on X involves testing the model given above in Eq. 1, where, here, X1 is Effect Code, X1 given in Table 3. Regressing Y on X1, using Excel, yields the following regression statistics (Tables: 4, 5, & 6). 
	Table 4: Regression Statistics

	Multiple R
	0.655

	R Square
	0.429

	Standard Error
	0.775

	Observations
	10


	Table 5: ANOVA (Effect coding)

	 
	df
	SS
	MS
	F
	Sig

	Regression
	1
	3.600
	3.600
	6.000
	0.040

	Residual
	8
	4.800
	0.600
	 
	 

	Total
	9
	8.400
	 
	 
	 



In dummy coding, the group coded 0 is known as the reference (or control) group. In dummy coding, the intercept is equal to the mean of the reference group. Since, in our example, Group 2 is the reference group, the mean for Group 2 is given, Table 6, by the intercept: 3.2. Furthermore, in the two-group case, the coefficient associated with X1 is the difference between the mean of the group with the dummy code of 1 and the reference group. Hence, -1.2 is the difference between the mean of  Group 1 and the reference group (Group 2).

	Table 6: Regression Coefficients (Effect Coding)

	 
	Coef.
	Standard Error
	t Stat
	P-value

	Intercept
	3.200
	0.346
	9.238
	0.000

	X1
	-1.200
	0.490
	-2.449
	0.040



How do these results compare to the t test results given earlier in Table 2? First, recall that for a one-degree of freedom test, F = t2. From Tables 2, t =-2.499. t2 = 6.000, which is equal to F in Table 5. Note, also, that -2.449 is the value of the t test for the X1 regression coefficient (Table 6). Furthermore, from Table 2 we note that the mean difference, 
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 which is identical to the coefficient for X1, given in Table 6. In other words, the effect of the treatment is -1.2 units—whatever the treatment Group 2 received, it resulted in Group 2 having a mean score 1.2 units below Group 1. Both the t test and the regression analysis provide sufficient evidence for rejecting the null hypothesis. The regression analysis does tell us, however, (Table 4) that the “treatment“ effect accounted for 43% of the variance in Y (R2 = .429).

In the t test analysis we are given the mean Y for each group. The means are not given, at least not directly, by the regression analysis. However, the means can be computed easily from the regression analysis. Recall from my document on Linear Regression Equations, that the intercept,
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so that, ignoring group membership, the overall mean of Y is,
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Considering the group’s individually, for Group 1, 
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For Group 2, 
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Two-Group Effect and Orthogonal Coding

In the two-group case, effect coding and orthogonal coding are identical. Both types of coding use 1’s and -1’s to denote group membership (later we will see that, in orthogonal coding,  0’s and other values are used, depending upon the number of groups in the design). For the current example, effect and orthogonal coding would look like the coding in Table 7. In the table, you can see that the individuals in each group are uniquely identified by their X1 value.
	 
	 
	 

	Table 7: Orthogonal Coding

	Group
	Effect Code (X)
	Y

	1
	1
	1

	1
	1
	2

	1
	1
	2

	1
	1
	3

	1
	1
	2

	2
	-1
	3

	2
	-1
	3

	2
	-1
	4

	2
	-1
	4

	2
	-1
	2



Using the regression procedure in Excel yields the results shown in Tables 8, 9 and 10. An advantage of effect coding is that, when the group sizes are equal, the intercept, i.e., the coefficient, b0 , is equal to the overall mean; furthermore, the coefficient,  bI , is proportional to the difference between the means. In this two-group case, bI is equal to half the difference between the means of Group 1 and Group 2:
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which, is the value given for the coefficient , X1 in Table 10.


The percent of variance in Y accounted for (or explained by) treatment (R2) is .43—the same as that given in the earlier tables. In fact, the values in Table 8 (and Table 9) are identical to the values given in Table 4 (and 5)—an indication that, regardless of the type of coding used, the percentage of variance explained by group identification is the same. 
	Table 8: Regression Statistics

	Multiple R
	0.655

	R Square
	0.429

	Standard Error
	0.775

	Observations
	10


	Table 9: ANOVA

	 
	df
	SS
	MS
	F
	Sig

	Regression
	1
	3.600
	3.600
	6.000
	0.040

	Residual
	8
	4.800
	0.600
	 
	 

	Total
	9
	8.400
	 
	 
	 



What does change, however, are the regression coefficients (compare Table 10 with Table 6). Depending upon the type of coding used, the coefficients represent different estimates. In dummy coding, the intercept, b0 , is the mean of the group having X coded as zero. With orthogonal coding, on the other hand, b0  represents the overall grand mean. Furthermore, with dummy coding  the coefficient, b1 , is the difference between  the mean of the group coded 1 and the mean of the group coded 0. With orthogonal coding, b1 , is proportional to the differences between the groups.. 
	Table 10: Regression Coefficients

	 
	Coef.
	Std Err
	t Stat
	Sig

	Intercept
	2.600
	0.245
	10.614
	0.000

	OrthCode (X)
	-0.600
	0.245
	-2.449
	0.040


One-way ANOVA Design

We will now consider a four-group, one-way ANOVA design. The design is shown in Table 11
	Table 11: One-way ANOVA Design

	Group 1
	Group 2
	Group 3
	Group 4

	2
	3
	3
	5

	3
	1
	2
	3

	2
	2
	4
	4

	1
	3
	4
	2

	2
	2
	3
	5



An analysis of variance, using Excel, yielded the results shown in Tables 12 & 13.
	Table 12: Descriptive Statistics

	Group
	N
	Mean
	Variance

	Group 1
	5
	2.000
	0.500

	Group 2
	5
	2.200
	0.700

	Group 3
	5
	3.200
	0.700

	Group 4
	5
	3.800
	1.700


	Table 13: ANOVA for a Four-group Design

	Source
	SS
	df
	MS
	F
	P-value

	Between Groups
	10.800
	3
	3.600
	4.000
	0.027

	Within Groups
	14.400
	16
	0.900
	 
	 

	Total
	25.200
	19
	 
	 
	 


The results indicate a significant treatment (Between Groups) effect: F(3,16) =  4.000; p = .027. Ordinarily, a post-hoc test comparing pairs of group means (e.g., Tukey’s HSD, Newman-Keuls, etc.), would be indicated, but is ignored here.
Dummy Coding in One-way ANOVA


Dummy coding is, perhaps, the easiest system of coding treatment effects (i.e., group membership effects) in ANOVA. It uses columns of 1’s and 0’s to identify group membership. For instance, in Table 14, there are four “indicator” columns, or variables, i.e., the X’s. for X1, and individual is coded 1 if the individual belongs to Group 1, and zero otherwise. For X2, an individual is coded 1 if the individual belongs to Group 2, and so on. In this way the group to which an individual belongs is uniquely identified. For instance, an individual in Group 2 has the dummy code: 0 1 0 0.

	Table 14:  Dummy Variable Coding

	X1
	X2
	X3
	X4
	Y

	1
	0
	0
	0
	2

	1
	0
	0
	0
	3

	1
	0
	0
	0
	2

	1
	0
	0
	0
	1

	1
	0
	0
	0
	2

	0
	1
	0
	0
	3

	0
	1
	0
	0
	1

	0
	1
	0
	0
	2

	0
	1
	0
	0
	3

	0
	1
	0
	0
	2

	0
	0
	1
	0
	3

	0
	0
	1
	0
	2

	0
	0
	1
	0
	4

	0
	0
	1
	0
	4

	0
	0
	1
	0
	3

	0
	0
	0
	1
	5

	0
	0
	0
	1
	3

	0
	0
	0
	1
	4

	0
	0
	0
	1
	2

	0
	0
	0
	1
	5



Note, however, that, as we say in the case of the two-group design, there is a redundancy in the coding displayed in Table 14. Only three of the four X columns are required to identify the groups to which individuals belong. We can ignore any one of the X columns and still be able to identify unique group membership. For instance, if we ignore X4 then,

Individuals belong to Group 1 have the dummy code: 1 0 0,

Individuals belong to Group 2 have the dummy code: 0 1 0,

Individuals belong to Group 3 have the dummy code: 0 0 1, and

Individuals belong to Group 4 have the dummy code: 0 0 0.


In fact, if all four of the X columns were included in a regression analysis, the redundancy would lead to an indeterminate solution. In general, we need only as many Xs as there are independent variable degrees of freedom (number of groups -1).

To analyze the data in Table 14, we set up the following regression equation.
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(Eq. 2)
using only the first three predictors (X1, X2, and X3). The regression analysis computed in Excel, yielded the results shown in Tables 15, 16, and 17. As can be seen, the model accounted for 43% of the variance in the dependent variable, Y , i.e., R2 = .429 (the fact that this is identical to the R2 given in the two-group examples, earlier, is purely coincidental.)
	Table 15: Regression Statistics

	Multiple R
	0.655

	R Square
	0.429

	Standard Error
	0.949

	Observations
	20.000



The analysis of variance table (Table 16) confirms the statistical significance of the regression model, F(3,19) = 4.000, p = .027.
	Table 16: ANOVA

	 
	df
	SS
	MS
	F
	Sig

	Regression
	3
	10.800
	3.600
	4.000
	0.027

	Residual
	16
	14.400
	0.900
	 
	 

	Total
	19
	25.200
	 
	 
	 



As in the case of a two-group design, when using dummy coding, the group with all zeros for the Xs is called the reference (sometimes the control) group. (Obviously, with some rearranging of the 1s and 0s, any one of the groups can be designated the reference group.) When examining the regression coefficients (Table 17), the coefficient for the intercept is equal to the sample mean of the reference group (in this case, Group 4). Hence, 3.800 is the mean of Group 2 (see Table 12). Each of the other coefficients are equal to the difference between the mean of the reference group and the mean of the group corresponding to the coefficient. For instance, the coefficient for X2 is equal to the mean of Group 2 minus the mean of the mean of the reference (2.2 – 3.8 = -1.6).

The t tests for the regression coefficients in Table 17 indicate that the difference between Group 1 and Group 4, and difference between Group2 and Group 4 are significant. The difference between Group 3 and Group 4 is not significant. 


The empirical regression equation, using the results obtained from the sample is:
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	Table 17: Regression Coefficients

	 
	Coef.
	Std Err
	t Stat
	P-value

	Intercept (b0)
	3.800
	0.424
	8.957
	0.000

	X1
	-1.800
	0.600
	-3.000
	0.008

	X2
	-1.600
	0.600
	-2.667
	0.017

	X3
	-0.600
	0.600
	-1.000
	0.332


Effect Coding in One-way ANOVA

Recall, from the effect coding section under the two-group design, that effect coding uses 1’s and -1’s to designate group (i.e., treatment group) membership. Since the one-way design being considered here has four groups, there are 3 (number of groups minus one) degrees of freedom. In effect coding, there is one (predictor) column for each degree of freedom. For the current example, effecting coding is given in table 18. 

	Table 18: Effect Coding

	X1
	X2
	X3
	Y

	1
	0
	0
	2

	1
	0
	0
	3

	1
	0
	0
	2

	1
	0
	0
	1

	1
	0
	0
	2

	0
	1
	0
	3

	0
	1
	0
	1

	0
	1
	0
	2

	0
	1
	0
	3

	0
	1
	0
	2

	0
	0
	1
	3

	0
	0
	1
	2

	0
	0
	1
	4

	0
	0
	1
	4

	0
	0
	1
	3

	-1
	-1
	-1
	5

	-1
	-1
	-1
	3

	-1
	-1
	-1
	4

	-1
	-1
	-1
	2

	-1
	-1
	-1
	5



The regression model for the analysis using effect coding is the same as that given Eq. 2 using the new values for the Xs. Computing the regression analysis, using Excel, yield the results given in Tables 19, 20, and 21. Unsurprisingly, the percent of variance in Y explained (R2) by the effect variables is .43—the same as was found in the regression analysis using dummy variables (Table 15). That this regression model is statistically significant is shown in Table 20: F(3,16) = 4.00; P  = .027. These are identical to the results given in Table 16 for the analysis using dummy variables.
	Table19:  Regression Statistics

	Multiple R
	0.655

	R Square
	0.429

	Standard Error
	0.949

	Observations
	20


	Table 20: ANOVA

	 
	df
	SS
	MS
	F
	Sig

	Regression
	3
	10.800
	3.600
	4.000
	0.027

	Residual
	16
	14.400
	0.900
	
	

	Total
	19
	25.200
	 
	 
	 



What is different between the analysis using dummy coding and the analysis using effect coding is the interpretation of the regression coefficients (Table 21). When using effect coding, the intercept (b0) gives the overall grand mean. Each of the other coefficients give the deviation of the mean of its corresponding group from the grand mean. For instance the grand mean, the mean over all cases in the design, is 2.8. The deviation of mean for Group 1 from the grand mean is (2 – 2.8 = -.8).
	Table 21: Regression Coefficients

	 
	Coef.
	Std Err
	t Stat
	P-value

	Intercept
	2.800
	0.212
	13.199
	0.000

	X1
	-0.800
	0.367
	-2.177
	0.045

	X2
	-0.600
	0.367
	-1.633
	0.122

	X3
	0.400
	0.367
	1.089
	0.292



In this analysis, only the deviation of the mean for Group 1 from the overall grand mean is statistically significant:  t(1) = -2.177; p = .045.

Orthogonal Coding in One-Way ANOVA

Orthogonal coding, for the one-way ANOVA design is similar to effect coding except that 0’s, 1s, and higher values are also used to identify group membership. Orthogonal coding requires the two conditions, (1) that the sum of the values coded for any given X variables is zero, and (2) that the sum of the cross products (Xj ( Xk ) equal zero. The orthogonal coding given in Table 22 satisfies these conditions. Summing the coded values under X1 yields zero. This is true, also, for X2 and X3. Furthermore, summing the cross products (X1 ( X2) also yields zero.

Again the regression model to be analyzed is identical to that given in Eq. 2. Only here, the values of the Xs are different. The regression analysis, using the procedure in Excel, yields the same R2 (Table 23) and ANOVA (Table 24) results as those given earlier in the examples using dummy coding and effect coding. The differences occur in the regression coefficients (Table 25).

In orthogonal coding, the intercept (b0) estimates the grand mean. The individual regression coefficients represent weighted contrasts between group means. The coefficient for X1 is equal to 
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	Table 22: Orthogonal Coding

	X1
	X2
	X3
	Y

	1
	1
	1
	2

	1
	1
	1
	3

	1
	1
	1
	2

	1
	1
	1
	1

	1
	1
	1
	2

	-1
	1
	1
	3

	-1
	1
	1
	1

	-1
	1
	1
	2

	-1
	1
	1
	3

	-1
	1
	1
	2

	0
	-2
	1
	3

	0
	-2
	1
	2

	0
	-2
	1
	4

	0
	-2
	1
	4

	0
	-2
	1
	3

	0
	0
	-3
	5

	0
	0
	-3
	3

	0
	0
	-3
	4

	0
	0
	-3
	2

	0
	0
	-3
	5


	Table 23: Regression Statistics

	Multiple R
	0.655

	R Square
	0.429

	Standard Error
	0.949

	Observations
	20


	Table 24: ANOVA

	 
	df
	SS
	MS
	F
	Sig

	Regression
	3
	10.800
	3.600
	4.000
	0.027

	Residual
	16
	14.400
	0.900
	 
	 

	Total
	19
	25.200
	 
	 
	 


For instance, the coefficient for X1 (i.e., b1) is (1/2)(2.0 – 2.2) or -.1. The coefficient for X2 is (1/4)[(2.0 + 2.2) – 2 ( 332], or -.367. And, for X3, the regression coefficient is (1/6)[(2.0 + 2.2 + 3.2) – 3 ( 3.8], or -.333.

	Table 25: Regression Coefficients

	 
	Coef
	Std Err
	t Stat
	P-value

	Intercept
	2.800
	0.212
	13.199
	0.000

	X1
	-0.100
	0.300
	-0.333
	0.743

	X2
	-0.367
	0.173
	-2.117
	0.050

	X3
	-0.333
	0.122
	-2.722
	0.015



In this analysis, using orthogonal coding, only the coefficients for X2 and X3 are statistically significant. From this we can conclude that the combined mean of Groups 1 & 2 is different from the mean of Group 3 (Group 3 had a higher mean than the average of Groups 1 & 2.) Furthermore, the mean of Group 4 was significantly different from the combined mean of Groups 1, 2 & 3.
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