
1 Nonparametric Statistics

By Steven Arnold
Professor of Statistics-Penn State University

Some good reference for the topics in this course are

1. Higgins, James, (2004) Introduction to Nonparametric Statistics

2. Arnold,Steve (1990) Mathematical Statistics, Chapter 17

3. Hettmansperger, T and McKean, J (1998), Robust nonparametric

Statistical Methodology

The first book we use for our undergrad course. It is written at about the
same level as this course. The second book contains a basic outline of the
theory most of which is not presented here. The third book has a detailed
description of the theory. It is the source I use when I want to fully understand
why a particular procedure is effective.

1.1 Parametric, nonparametric and semiparametric mod-

els

A parametric statistical model is a model whose joint distribution is dependent
on several unknown constants called parameters. The only things unknown
about the model are the parameters. Two parametric models commonly en-
countered in astronomical experiments are

1. The Poisson model in which we assume that the observations are indepen-
dent Poisson random variables with unknown common mean θ.

2. The normal model in which the observations are independently distributed
with unknown mean µ and unknown variance σ2.

In the first model θ is the parameter and in the second µ and σ2 are the
parameters.

Anything we can compute from the observations is called a statistic. In
parametric statistics the goal is to use observed statistics to draw inference
about the unobserved parameters.

All the other classes in this school are concerned with parametric statistics.
While in many situations parametric assumptions are reasonable (e.g. nor-

mal assumption for background noise, Poisson distribution for a photon counting
signal of a nonvariable source), in many situations no prior knowledge of the
underlying distributions. In these situations, the use of parametric statistics
can give misleading or even wrong results.

A nonparametric model is one in which the only assumptions made about
the distribution of the observations is that they are independently identically
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distributed (i.i.d.) from an arbitrary continuous distribution. There are no
parameters in a nonparametric model.

A semiparametric model is one in which has parameters but very weak as-
sumptions are made about the actual form of the distribution of the observa-
tions.

Both nonparametric and semiparametric models used to be (and often still
are) lumped together and called nonparametric models. The distinction we
have made goes back to Huber in the 1960’s and is becoming more and more
common.

Procedures derived for nonparametric and semiparametric models are often
called robust procedures since they are dependent only on very weak assump-
tions.

Today’s short course will primarily be concerned with nonparametric and
semiparametric models.

1.2 Permutation tests

We can often do nonparametric tests with parametric statistics by using per-
mutation tests. We give two examples.

1. Consider a two sample problem with 4 observations X1, X2, X3, X4 in
the first sample from cdf F (x)and 3 observations Y1, Y2, Y3 in the second
sample from cdf G (y) .We want to test the null hypothesis F (x) = G (x)
against the alternative hypothesis F (x) 6= G (x) Suppose we observe 37,
49, 55, 57 in the first sample and 23, 31, 46 in the second. Suppose we
want a test with size .10.

(a) The parametric test for this situation is the two-sample t-test which
rejects if

|T | =

∣∣∣∣∣∣
X − Y

Sp

√
1
4 + 1

3

∣∣∣∣∣∣
> t.055 = 2.015

For this data set, T = 2.08 so we reject (barely). The p-value for
these data is .092. Note that this analysis depends on the assumptions
that the data are normally distributed with equal variances.

(b) We now look at rearrangements of the data observed. One possible
rearrangement is 31, 37 46, 55 in the first sample and 23, 49, 57 in
the second. For each rearrangement, we compute the value of the
T. Note that there are (

7
4

)
= 35

such rearrangements. Under the null hypothesis (that all 7 obser-
vations come from the same distribution) all 35 rearrangements are
equally likely, each with probability 1/35. With the permutation
test, we reject if the value of T for the original data is one of the 2

2



largest or 2 smallest. This test has α = 4/35 = .11 The p-value for
the permutation test is twice the rank of the original data divided by
35.

(c) If we do this to the data above, we see that the original data gives
the second largest value for T . (Only the rearrangement 46, 49,
55, 57 and 23, 31, 37 gives a higher T.) Therefore we reject the null
hypothesis. The p-value is 2 × 2/35 = .11. Note that the only
assumption necessary for these calculations to be valid is that under
the null hypothesis the two distributions be the same (so that each
rearrangement is equally likely). That is, the assumptions are much
lower for this nonparametric computation.

(d) For any rearrangement,

∑
Xi +

∑
Yi = 298

∑
X2

i +
∑

Y 2
i = 13, 650

Let V =
∑

Xi. Then using the facts in the previous equations, it can
be shown that for any rearrangement, T is completely determined
by V and is an increasing function of V. This means that to find the
rearrangements which maximize T, we can find the rearrangements
which maximize V, which is somewhat easier. Note that for the best
arrangement, V = 207 and for the original arrangement V = 198

2. Now suppose we have a single sample with 5 observations X1, X2, X3, X4, X5.
We want to test the null hypothesis that the observations are centered at
0 against the alternative that they are not. We again want a .10 test.
We observe -3, 1, 4, 6, 8.

(a) The parametric test for this problem is the one-sample t-test which
rejects is

|T | =

∣∣∣∣∣

√
5

(
X

)

S

∣∣∣∣∣ > t.054 = 2.132

For these data, T = 1.65, so we accept the hypothesis that the ob-
servations are symmetric about 0. The p-value for these data is
.17.

(b) To use a permutation version of this test, we first take the absolute
values of all the observations, getting 1,3,4,6,8. Under the null hy-
pothesis that the distribution is symmetric about 0, each of these
5 numbers is equally likely to be positive or negative. Therefore, a
rearrangement of the data is to assign each observation to be positive
or negative. For example, one such rearrangement is 1,-3,4,-6,8. We
look at each of the 25 = 32 rearrangements. For each rearrangement
we compute T. If our observed T is one of the 2 largest or 2 smallest,
we reject the hypothesis of symmetry about 0. The size α for this
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test is 4/32 = .125. The p-value is the twice the rank of the observed
T divided by 32. By a similar argument to that for the two-sample
problem, we can look at V =

∑
Xi, instead of T.

(c) Clearly the largest value for V is 22, when we use 1,3,4,6,8. The
second largest, 20, occurs for -1,3,4,6,8. and the third largest, 16,
occurs for the original observations 1,-3,4,6,8. Therefore we accept
the hypothesis that the distribution is symmetric about 0. The
p-value is 2 × 3/32 = .19.

These permutation computations are only practical for small data sets. For
the two sample model with m and n observations in the samples, there are

(
m + n

m

)
=

(
m + n

n

)

possible rearrangements. For example
(

20
10

)
= 184, 756

so that if we had two samples of size 10, we would need to compute V for a
total of 184,756 rearrangements. Similarly, for the one-sample problem with n
observations, there are 2n rearrangements. For example

220 = 1, 048, 576

so that in a one sample problem with 20 observations, we would need to compute
V for 1,048,576 rearrangements.

A recent suggestion is that we don’t look at all rearrangements, but rather
look a randomly chosen subset of them and estimate critical values and p-values
from the sample.

What most people who use these tests would do in practice is use the t-test
for large samples, where the t-test is fairly robust and use the permutation cal-
culation in small samples where the test is much more sensitive to assumptions.

1.3 Rank tests

1.3.1 Basic discussion

Most of this talk is concerned with so-called rank procedures. The models for
these procedures are typically semiparametric models. In these procedures, we
jointly rank the observations is some fashion. We take the procedures which
we used for the associated parametric model and replace the observations with
their ranks. In using these procedures, it is occasionally important that the small
ranks go with small observations. Often it does not matter which order we rank
in. We always rank with small ranks associated with small observations.

One advantage of using ranks instead of the original observations is that are
not changed by monotone transformations. There is no reason to think about
transforming the observations before doing a rank procedure.
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One other advantage of replacing the observations with the ranks is that the
more extreme observations are pulled in closer to the other observations. A
disadvantage is that nearby observations are spread out. For example

Obs 1 1.05 1.10 2 3 100 1, 000, 00
Rank 1 2 3 4 5 6 7

Power When they were first developed, the rank procedures were called ”quick
and dirty” procedures. However, this is completely inaccurate. In order to
rank the observations, we have to first order them, something computers do very
slowly. The parametric procedures can be computed in one pass through the
data, but the ranks cannot. (So the rank procedures are ”slow”.) However as
we shall discuss below, they procedures have some strongly positive statistical
properties, so they are not ”dirty”.

Later the main motivation was that the size of the rank procedures does
not depend on the normal assumption and so the procedures are more robust.
(Note that they do depend on all the other assumptions.) However, because
of the central limit theorem, the parametric procedures are also robust against
the normal assumption.

The main reason we continue to study these rank procedures is power. Sup-
pose the sample size is moderately large. If the observations are really normally
distributed, then the rank procedures are nearly as powerful as the parametric
ones (which are the best for normal data). In fact it can be shown that Pitman
asymptotic relative efficiency (ARE) of the rank procedure to the parametric
procedure is

3/π = .95

and in fact the ARE is always greater than 3/π. However the ARE is ∞ for
some non-normal distributions. What this means is the rank procedure is never
much worse that parametric procedure, but can be much better.

Ties The assumed continuity in the models below implies there are no ties.
However, often there are ties in practice. Procedures have been developed for
dealing with these ties. Higgins discusses these procedures. They are often
rather complicated and not uniquely defined so we do not discuss them here.

1.3.2 The one sample model

In the semiparametric one sample model, we observe a sample from a distribu-
tion which is symmetric about an unknown parameter θ. We also assume that
the distribution is continuous. We often write this model as one in which we
observe Xi

Xi = θ + ei, i = 1, ..., n

where the ei are i.i.d. from a continuous distribution which is symmetric about
0. Note that θ is the median of the distribution and is also the mean if it exists.
The assumed continuity implies that there will be no ties and no 0’s.
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The Wilcoxon signed rank statistic Suppose we want to test the null
hypothesis that θ = 0 against the alternative that θ 6= 0.

We first rank the absolute values of the observations getting Ri for the rank
of the absolute value of the ith observation. The signed rank of an observation
is the rank of the observation times the sign of the observation. We then could
compute the one-sample t − test statistic using the signed ranks instead of the
observations.

Let

Si =
1 if Xi > 0
0 otherwise

By similar arguments to one mentioned in the last section, we can base the test
on

Q =
∑

SiRi.

We reject if Q is too large or too small. This is called the Wilcoxon signed rank

statistic.

Motivation for shape of test: Suppose the θ > 0. Then the number of
positive observations should be greater than it would be if the center were 0.
Also the ranks should be higher. Therefore Q should be larger when θ > 0
than when θ = 0. Similarly, when θ < 0, then Q should be smaller than when
θ = 0.

To compute the exact critical points and p-values we use permutations test
arguments as before.

Motivation for use of permutation test calculations to do computations
under the null hypothesis: When θ = 0, the distribution of the observations
is symmetric about 0. This means that the probability of any rearrangement of
signs should be the same.

Let Q[i] be the order statistics computed from the outcomes of Q from the
different rearrangements.

Using the data from the last example -3, 1, 4, 6, 8, we get

data −3 1 4 6 8
SR 0 1 3 4 5

so that the signed rank statistic is

Q = 13.

As we said before there are 25 = 32 possible arrangements of the signs. There-
fore as before, for a .125 we reject if the observed value for Q is one of the two
largest or two smallest. Obviously, the rearrangement which gives the high-
est value for Q is one in which all 5 ranks are positive giving Q[32] = 15, and
the second highest is one in which 1 is the only rank which is negative giving
Q[31] = 14, and the third best is the actual data with Q[30] = 13 so that these
data are not significant. As before, the p-value for this data set is 2X3/32=.19

Tables of the permutation (exact) distribution of Q are given on p. 346 of
Higgins.
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Normal approximation It can be shown that for large sample the null dis-
tribution of Q is approximately normal with mean µ and variance σ2 where

µ =
n (n + 1)

4
, σ2 =

n (n + 1) (2n + 1)

24

Suppose, as above,we compute Q = 13 based on a sample of size 5. In this
case µ = 7.5, σ2 = 13.75, so the approximate p-value is (using a continuity
correction)

2P (Q ≥ 13) = 2P (Q ≥ 12.5) =

2P

(
Q − 7.5√

13.75
≥ 12.5− 7.5√

13.75

)
= 2P (Z ≥ 1.35) = .18

which is not far from the true p-value derived in the last section even for this
small sample size.

Hodges-Lehmann confidence interval and estimator for θ Let

Wij =
Xi + Xj

2
, i ≥ j

be the average of the ith and jth original observations, called a Walsh average.

For the simple data set above, these are

−3 1 4 6 8
−3 −3 −1 .5 1.5 2.5
1 1 2.5 3.5 4.5
4 4 5 6
6 6 7
8 8

Let W[i] be the ith largest Wij . Another representation for the Wilcoxon statistic
is

Q = # (Wij ≥ 0)

(Note that this definition gives Q = 13 for the example.)
Now suppose that we do not know θ. Let

Q (θ) = # (Wij ≥ θ)

Then the general distribution of Q (θ) is the same as null distribution Q.
Suppose that a size 1− α two-sided test Wilcoxon test that θ = 0 accepts if

a ≤ Q < b.

Then a 1 − α confidence interval for θ is

a ≤ Q (θ) < b ⇔ U[a] < θ ≤ U[b]

This confidence interval is called the Hodges-Lehmann confidence interval for θ
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For our data, we see that the acceptance region for a .125 test is

2 ≤ Q < 14

so that
U[2] < θ ≤ U[14] ⇔ −1 < θ ≤ 7

is a .875 confidence interval for θ. Note the assumed continuity implies that the
inequality can be replaced by an equality in the last formula (but not the one
before it) or vice versa.parametric interval is −.543 ≤ θ ≤ 6.94

Note that the HL interval is associated with the Wilcoxon test in that the
two-sided Wilcoxon test rejects θ = 0 iff 0 is not in the confidence interval.

The Hodges-Lehmann estimator for θ is the median of the Walsh averages.
In out data set it is the 8th largest Walsh average, namely

θ̂ = 3.5

Note that the parametric estimator is X = 3.2. The HL estimator is associated
with the HL confidence interval, but discussion of this concept is beyond the
expectations of this course.

Note that there is no problem with ties in either the HL confidence interval
or HL estimator.

1.3.3 The two-sample model

In this model we assume that we observe independent samples X1, ..., Xn from
distribution function F (x) , and Y1, ..., Yn from distribution G (y) = F (y + δ) .
The only additional assumption is the F (and hence G) is a continuous dis-
tribution. There is no symmetry assumption in the two sample model. The
continuity of the distributions implies there will be no ties. This situation is
often called a shift family. We could write it as

Xi = δ + ei, Yj = fj

where all the ei and fj are i.i.d. Note that δ is the difference between the means
(if they exist) and the difference between the medians, but that the variances
must be the same for the two populations.

The Wilcoxon rank sum statistic Consider testing that δ = 0 against
δ 6= 0. We first jointly rank all the observations Let Ri and Sj be the ranks
associated with Xi and Yj . Then we could compute a two-sample t based on
these ranks. However, an equivalent test is based on

H =
∑

Ri

We reject if H is too large or too small. This test is called the Wilcoxon rank-

sum test. We compute critical values and p-values using permutation test
calculations.
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Motivation for shape: If δ > 0, then the X ′s should be greater than the
Y ′s, hence the R′

is should be large and hence H should be large. A similar
motivation works when δ < 0.

Motivation for using permutation calculations to determine critical values
and p-values: Under the null hypothesis that δ = 0, the X ′s and Y ′s are a
big sample from F. Therefore every rearrangement of the ranks should have the
same probability.

For the data set used in the first section we see that

obs 37 49 55 57 23 31 46
rank 3 5 6 7 1 2 4

Therefore, for the data
H = 21

Again we reject if the observed H is one of the two largest or two smallest values.
We recall that there are a total of 35, so this has size 4/35=.11. Note that
rearrangement with the largest value for H has ranks 4,5,6,7, so that H[35] =
22.The second largest rearrangement is the observed data so that H[34] = 21,
and we reject the null hypothesis. The p-value is 2 × 2/35 = .101. Similarly

H[1] = 10, H[2] = 11, H[3] = 12

Tables of the permutation (exact) distribution of H are given on p.340 of
Higgins.

Normal approximation It can be shown that for large sample the null dis-
tribution of H is approximately normal with mean µ and variance σ2 where

µ =
m (m + n + 1)

2
, σ2 =

mn (m + n + 1)

12

Suppose, as above,we compute H = 21 based on a samples of size 4 and 3.
In this case µ = 16, σ2 = 8, so the approximate p-value is (using a continuity
correction)

2P (H ≥ 21) = 2P (H ≥ 20.5) =

2P

(
Q − 16√

8
≥ 20.5− 16√

8

)
= 2P (Z ≥ 1.59) = .11

which is close to the true p-value derived in the last section even for this small
sample size.

The Mann-Whitney test Let

Vij = Xi − Yj , U = # (Vij > 0)

The Mann-Whitney test rejects if U is too large.
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For our example we see that

23 31 46

37 14 6 −9
49 26 18 3
55 32 24 9
57 34 26 11

Therefore, for this data set U = 11.
It can be shown that there is a relationship between the Wilcoxon rank sum

H and the Mann-Whitney U :

H = U +
m (m + 1)

2
.

Therefore, critical values and p-values for U can be determined from those for
H.

The Hodges-Lehmann confidence interval and estimator for δ The
Hodges Lehmann estimator for δ is the median of the Vij

Let
U (δ) = # (Vij > δ)

Then the general distribution of U (δ) is the same as the null distribution of U.
Suppose that two-sided size α test the δ = 0 against δ 6= 0 accepts if

a ≤ U < b

Then a 1 − α confidence region for δ is

a ≤ U (δ) < b ⇔ V[a] < δ ≤ V[b]

which is the Hodges-Lehmann confidence interval for δ. In our example the
estimator is the average of the 6th and 7th largest of the Vij , giving

δ̂ = 16

The parametric estimator is X − Y = 16.2.
To find the confidence interval, note that H = U + 10

.89 = P (12 ≤ H < 21) = P (2 ≤ U < 11)

Therefore the .89 Hodges-Lehmann confidence interval for δ is

V[2] ≤ δ < V[11] ⇔ 3 ≤ δ < 32

The classical (t) confidence interval is 1.12 < δ ≤ 31.22.
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1.3.4 Paired data

In this model we observe a sequence (X1, Y1) , ..., (Xn, Yn) of i.i.d. random
2−dimensional random vectors such that

(Xi, Yi − θ) ∼ (Yi − θ, Xi)

The goal is to draw inference about θ. Let

Di = Xi − Yi

By the equation above, the distribution of Di is symmetric about θ. Therefore,
we may used the procedures discussed earlier for the one-sample model, which
we do. (Note that is the same thing we do for paired data in parametric case.
Take differences and use one-sample procedures.)

I suppose most practical applications of the signed rank test are to paired
data. In fact, Higgins does not discuss the signed rank test in the one-sample
chapter, but only in the chapter on paired models.

1.3.5 K-sample model

The F-test In the parametric version of the k-sample model. we observe Xij ,
independent, where

Xij ∼ N
(
µi, σ

2
)
, i = 1, ...k; j = 1, ..., ni, N =

∑
ni

We want to test whether the µi are equal. The test we often use is to reject
when

F > F α
k−1,N−k, F =

MSTR

MSE

MSTR =

∑
ni

(
Xi. − X ..

)2

k − 1
, MSE =

∑∑ (
Xij − X i

)2

N − k

If we want to make this procedure into a more robust one, we can find a new
critical value by doing a permutation test on this model. The calculations are
an obvious extension of those for the two-sample model.

Parametric multiple comparisons After rejecting with the F-test, we want
to find out which of the cells have different means, leading to multiple compar-
isons procedures. We say that procedure controls the per comparison error rate
if the probability of a particular false rejection is α and the procedure controls
the experiment-wide error rate if the probability of at least 1 false rejection is
α (across the whole experiment.) Early work on multiple comparisons focused
on controlling the per comparison error rate, but in the last 30-40 years the
emphasis is on controlling the experiment-wide error rate.

Fisher’s least significant difference (LSD) only controls the per comparison
error rate and so most statisticians don’t use it. Tukey’s honest significant
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difference (HSD) controls the experiment-wide error rate and is typically rec-
ommended. This procedure says the ith and i*th mean are significantly different
if

∣∣Xi − X i∗

∣∣ >
qα
k,N−k√

2

√
MSE

(
1

ni
+

1

ni∗

)

where qα
k,N−k is the upper α critical point for a studentized range distribution.

Tables of these critical point are in most analysis of variance books. One is
also in Higgins, p. 345.

The Kruskal-Wallis test The semiparamteric model we use for the k-sample
problem is that we observe

Xij = θi + eij , i = 1, ..., k; j = 1, ..., n, N =
∑

ni

where the θi are unobserved parameters and the eij are i.i.d. from a continuous
distribution. Note that this model allows the means (if they exist) to be different
for the different samples, but assumes that the variances (if they exist) are the
same. Note also that the continuity implies no ties.

We want to test the null hypothesis that the θi are equal against the alter-
native that at least one pair θi, θi∗ are different.

To do the Kruskal-Wallis test, we first jointly rank the k-samples as we did
the two-samples earlier. Let Rij be the rank associated with Xij and let Ri.

be the average of the ranks in the ith sample. We could then replace the Xij in
the F-statistic with ranks Xij . It can be shown that an equivalent test can be
based on

KW =
12

N(N + 1)

∑
ni

(
Ri. −

N + 1

2

)2

Note that is just a constant multiple time MSTR with ranks replacing observa-
tions. (Not that R.. = (N + 1) /2). Clearly we reject if KW is too large.

To find the critical values for this test, can use permutation tests in the
obvious way (kind of a mess). Table of these exact critical values are given in
Higgins, p.343.

The large sample approximation for null distribution of KW is

KW
•∼ χ2

k−1

Rank-based HSD If we have done a Kruskal-Wallis test and rejected, we
know that there is at least one pair θi and θi∗ which is significantly different
and perhaps many such pairs. We can use the following method to test which
pairs are significantly different. We say that θi and θi∗ are significantly different
if

∣∣Ri − Ri∗

∣∣ > qα
k−1,∞

√
N (N + 1)

24

(
1

ni
+

1

ni∗

)

This procedure controls the experiment-wide error rate for reasonable sample
sizes.
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1.3.6 Correlation coefficients

Pearson’s r The parametric analysis assumes that we have a set of i.i.d. two-
dimensional vectors, (X1, Y1) , ..., (Xn, Yn) which are normally distributed with
correlation coefficient

ρ =
cov (Xi, Yi)√

var (Xi) var (Yi)
.

ρ is estimated by the sample correlation coefficient (Pearson’s r)

r =

∑(
Xi − X

) (
Yi − Y

)
√∑ (

Xi − X
)2 ∑ (

Yi − Y
)2

The null hypothesis ρ = 0 is tested with the test statistic

t =

√
n − 2

1 − r2
r ∼ tn−2

under the null hypothesis.
To make this test more robust, we can use a permutation test to get non-

parametric critical values and p-values. To do the rearrangements for this test,
we fix the X ′s and permute the Y ′s.

Some semiparametric correlation coefficients A semiparametric model
alternative for the normal correlation model above is to assume that the (X1, Y1)
, ..., (Xn, Yn) are i.i.d. from a continuous bivariate distribution. This means no
ties

Spearman’s rank correlation We rank the X’s and Y’s separately getting
ranks Ri and Si. The sample correlation coefficient between the Ri and Si is
called Kendall’s rank correlation.Suppose, for example the we observe

x 1 3 6 9 15
r 1 2 3 4 5
y 1 9 36 81 225
s 1 2 3 4 5

Then the rank correlation rS is obviously one. Note that this happens because
Y = X2. Since Since Y is not a linear function of X, the correlation coefficient
is less than 1. In fact the correlation coefficient is .967.

We often want to test that X and Y are independent. We reject if rS is
too large or too small. We determine the critical values and p-values from the
permutation test as described above. For reasonably large sample sizes, it can
be shown that under the null hypothesis

rS
•∼ N

(
0,

1

n − 1

)
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Kendall’s coefficient of concordance We say two of the vectors (Xi, Yi)
and (Xi∗, Yi∗) are concordant if

(Xi − Yi) (Xi∗ − Yi∗) > 0

Kendall’s τ is
τ = 2P ((Xi − Yi) (Xi∗ − Yi∗) > 0) − 1

We estimate Kendall’s τ by

rK = 2
# (concordant pairs)(

n
2

) − 1

To test τ = 0, we would use rK . One and two sided (exact) critical values can
be determined from permutation arguments. Approximate critical value and
p-values can be determined from the fact that for reasonably large n, the null
distribution is

rK
•∼ N(0,

4n + 10

9 (n2 − n)
).

1.4 Robust regression

As we have mentioned earlier, robust seems to be one of those terms whose
meaning depends on context. Robust regression means procedures for regres-
sion problem which are less sensitive to extreme values of the response. They
are unfortunately quite sensitive to extreme values in the predictors.

In the robust regression model we have response observations (Yi) and pre-
dictor row vectors (xi). (Although we shall assume that x′s are known constants
and the Y ′s are observed random variables, we can usually handle the case of
random predictors by conditioning. The model we assume is that

Yi = xiβ+ei, i = 1, · · · , n

the β is an unobserved p-dimensional parameter and the ei are i.i.d. from a sym-
metric continuous distribution with mean 0 and variance σ2. If we assume that
the ei are normally distributed, we have the usual multiple regression model.

Let

Y =




Y1

...
Yn


 , X =




x1

...
xn


 , e =




e1

...
en




so that
Y = Xβ + e

We assume as usual that the X matrix has rank p.
We now review normal regression. We estimate β by ordinary least squares

(OLS) i.e. by minimizing

‖Y −Xβ‖2
=

∑
(Yi − xiβ)

2
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getting the OLS estimator

β̂ = (X′X)
−1

X′Y

Actually most software does not use this formula but rather solves the normal
equations

X′Xβ̂ = X′Y

We also note that
β̂ ∼ Np

(
β,σ2 (X′X)

−1
)

Most conclusions that that we are interested follow from this result and

σ̂2 =

∥∥∥Y −Xβ̂
∥∥∥

2

n − p
=

∑ (
Yi − xiβ̂

)2

n − p
,

(n − p) σ̂2/σ2 ∼ χ2
n−p.

One important problem with the normal development is that OLS is too
sensitive too outliers. Robust regression is an answer to this problem.

Other problems with regression which robust regression does not help: un-
equal variance, influence, multi-collinearity, association vs. causation.

1.5 M-estimators

Consider once again the regression model without the normal assumption. Let
ρ (y) be a symmetric function with a unique minimum at y = 0. Then an
M-estimator of β minimizes

∑
ρ

(
Yi − xiβ

σ̂

)

For example if ρ (y) = y2, we just get the OLS. If ρ (y) = |y| we get the minimum
absolute deviation. One recent favorite for people using M-estimators is the
Tukey Bisquare function

ρ (x) = min
(
x6 − 3x4 + 3x2, 1

)

Another one, for which I cannot find a formula is the optimal weight function
of Yohai and Zamar.

One very interesting fact about an M-estimator β̂M is that

β̂M
•∼ Np

(
β, τ2 (X′X)

−1
)

where τ2 is dependent on the distribution of the errors and on the function ρ.
It is possible to estimate τ2 from the data. After that M-estimator inference
about β essentially follows least squares inference about β.
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1.6 Rank estimators

Consider the following measure of dispersion for u =(u1, ..., un)′

D (u) =
∑ ∑

|ui − uj | = 4
∑(

Ri −
n + 1

2

)
ui

Let
ei = Yi − xiβ, e =(e1, ..., en)′

Then the R-estimator minimizes D (e) . Note that the intercept drops out of
D (e) , so that intercept must be estimated separately. Usually the Hodges-
Lehmann estimator defined earlier is used. As for M-estimators, we can show
the rank estimator β̂r satisfies

β̂
•∼ Np

(
β,κ2 (X′X)

−1
)

where κ2

1.7 Some nonparamtric procedures

In this last section, we consider two procedures which involve no parameters
(and so are actually non-parametric).

1.7.1 One-sample Kolomogorov-Smirnov

Suppose we observe X1, ..., Xn i.i.d. from a continuous distribution function
F (x) . We want to test the null hypothesis that F (x) = F0 (x) for all x, against
the alternative that F (x) 6= F0 (x) for some x, where F0 is a distribution which

is completely specified before we collect the data. Let F̂ (x) be the empirical dis-
tribution function (e.d.f.) The one sample Kolmogorov-Smirnov (KS) statistic
is

M = max
x

∣∣∣F̂ (x) − F0 (x)
∣∣∣

We want to reject if M is too large.
It is not hard to show that the exact null distribution of M is the same for

all F0, but different for different n. Table of critical values are given in many
books. A large sample result is for large n

P (nM > q)
•

= 2

∞∑

i=1

(−1)
i−1

exp
(
−2i2q2

)
•

= 2 exp
(
−2q2

)

Use of the last formula is quite accurate and conservative. There for a size α
test we reject if

nM >

(
−1

2
log

(α

2

))1/2

= Mα
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We can also construct a confidence band for the distribution as we now show.
First note that the distribution of

M (F ) = max
x

∣∣∣F̂ (x) − F (x)
∣∣∣

is the same as null distribution for the K-S test statistic. Therefore

1 − α = P (M (F ) ≤ Mα) = P

(∣∣∣F̂ (x) − F (x)
∣∣∣ ≤ Mα

n
for all x

)

= P

(
F (x) ∈ F̂ (x) ± Mα

n
for all x

)
.

On situation in which K-S is misused is in testing for normality. The problem
is that for K-S to be applied, the distribution F0 must be completely specified
before we collect the data. In testing for normality, we have to choose the mean
and the variance based on the data. This means that we have chosen a normal
distribution which is a closer to the data than the true F so that M is too small.
We must adjust the critical value to adjust for this as we do in χ2 goodness of fit
tests. Lilliefors has investigated the adjustment of p-values necessary to have a
correct test for this situation and shown that the test is more powerful than the
χ2 gladness of fit test for normality. The Anderson-Darling and Shapiro-Wilk
tests are specifically designed to test for normality.

Another test of this kind for testing F = F0 is the Cramer-von Mises test
based on ∫

∞

−∞

(
F̂ (x) − F0 (x)

)2

dF0

1.7.2 Two-sample Kolmogorov-Smirnov

For this problem, we have two samples X1, ..., Xm and Y1, ..., Yn from continuous
distribution functions F (x) and G (y) . We want to test the null hypothesis that
F (x) = G (x) for all x against the alternative that F (x) 6= G (x) for some x.

Let F̂ (x) and Ĝ (y) be the empirical distribution functions (edf’s) for the x′s
and y′s. The two sample Kolmogorov-Smirnov (K-S) test is based on

M = max
x

∣∣∣F̂ (x) − Ĝ (x)
∣∣∣

We reject if M is too large. As in the one sample case if n and m are large,

P (dM > q)
•

= 2

∞∑

i=1

(−1)
i−1

exp
(
−2i2q2

)
•

= 2 exp
(
−2q2

)

(where d = 1/
(

1
m + 1

n

)
) so that critical values may be determined easily.
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